MMSE equalization of FBMC systems with forward error correction

Leonardo G. Baltar, Dirk S. Waldhauser, Josef A. Nossek

June 21, 2009
Outline

1. Linear Equalization of FBMCs
2. Decision Feedback Equalization of FBMCs
3. Conclusions
Linear MMSE Equalization of FBMC Systems

Subchannel k:

Q: Length of the impulse responses $g'_k[n], m'_k[n]$ and $n'_k[n]$.

N: Equalizer $w_k[n]$ length.
Linear MMSE Equalization of FBMC Systems

Optimization problem:

$$w_{k,MMSE} = \arg \min_{w_k} E \left[|\hat{a}_k[m] - a_k[m - \nu]|^2 \right],$$

where

$$\hat{a}_k[m] = \text{Re} \left(w_k^H y_k[n] \right), \quad n = 2m, \quad m \in \mathbb{Z},$$

ν is the equalization delay and

$$y_k[n] = [y_k[n], \ y_k[n - 1], \ ..., \ y_k[n - N + 1]]^T \in \mathbb{C}^N.$$
Linear MMSE Equalization of FBMC Systems
Solution for i.i.d. input symbols $d_k[m]$ with variance σ_d^2:

$$ w'_{k,\text{MMSE}} = \left[H_kH_k^T + F_kF_k^T + R_{\eta,k}\right]^{-1} \frac{\sigma_d}{\sqrt{2}} H_k e_\nu, $$

with $H_k = \frac{\sigma_d}{\sqrt{2}} \begin{bmatrix} G_k^{(R)} \\ G_k^{(I)} \end{bmatrix}$, $F_k = \frac{\sigma_d}{\sqrt{2}} \begin{bmatrix} M_k^{(R)} & N_k^{(R)} \\ M_k^{(I)} & N_k^{(I)} \end{bmatrix}$,

$$ R_{\eta,k} = \frac{\sigma_\eta^2}{2} \Gamma'_k \Gamma'_{k,T}, \quad \Gamma'_k = \begin{bmatrix} \Gamma_k^{(R)} \\ \Gamma_k^{(I)} \end{bmatrix}, $$

$G_k^{(R)}, G_k^{(I)}, M_k^{(R)}, M_k^{(I)}, N_k^{(R)}, N_k^{(I)}, \Gamma_k^{(R)}, \Gamma_k^{(I)}$: Real and imaginary parts of the convolution matrices obtained from $g'_k[n], m'_k[n], n'_k[n]$ and $\gamma'_k[n]$.

e_\nu: \nu\text{-th unit vector.}

Waldhauser, D.S.; Baltar, L.G.; Nossek, J.A.; MMSE subcarrier equalization for filter bank based multicarrier systems; SPAWC 2008.
Adaptive Linear MMSE Equalization of FBMC Systems

O-QAM LMS:

\[w_k[n] \]

\[\Delta w_k[n] \]

\[e_k[n] \]

\[\epsilon_k[m] \]

\[O_k \]

\[O'_k \]

\[\hat{d}_k[m] \]

\[\tilde{d}_k[m] \]

Waldhauser, D.S.; Baltar, L.G.; Nossek, J.A.; Adaptive equalization for filter bank based multicarrier systems; ISCAS 2008.
Noise correlations

- Three distinguishable cases: Intra-subcarrier, Adjacent inter-subcarrier, Non-adjacent inter-subcarrier
 - Ideal scenario (frequency flat channel and no equalizer)
 - Intra-subcarrier - Non existent
 - Adjacent inter-subcarrier - Non existent
 - Non-adjacent inter-subcarrier - Non existent
 - Low frequency selective channel and one-tap equalizer
 - Intra-subcarrier - Non existent
 - Adjacent inter-subcarrier - small
 - Non-adjacent inter-subcarrier - very small (prototype dependent)
 - High frequency selective channel and linear multitap equalizer
 - Intra-subcarrier - expected
 - Adjacent inter-subcarrier - expected
 - Non-adjacent inter-subcarrier - very small (prototype dependent)
Noise correlations

- Correlations may affect the coded BER performance
- A WiMAX simulation scenario was considered and the coded BER was evaluated
- Channel coding with and without interleaving was considered
- Convolutional encoder with native rate 1/2, constraint length 7 and generator polynomials (IEEE Std. 802.16-2004): \(g_1(D) = 1 + D + D^2 + D^3 + D^6 \) and \(g_2(D) = 1 + D^2 + D^3 + D^5 + D^6 \)
- Block interleaver of length \(2^b \times M_{\text{used}} \) defined in IEEE Std. 802.16-2004
- A soft decoder (approximate LLR, “unquantized” inputs to the Viterbi decoder)
Coded BER Comparison between FBMC and CP-OFDM

Linear MMSE Eq. in WiMAX scenario

Parameters:
- 16-QAM
- $C_r = 1/2$
- Conv. code
- Soft decod.
- $M = 1024$
- $M_{\text{data}} = 768$
- $\Delta f = 10.9 \text{ kHz}$
- $BW = 10 \text{ MHz}$
- $T_s = 89.28 \text{ ns}$
- $T_{cp} = 91.42 \mu s (1/4)$
- $N = 7$
- ITU Veh. B Static
- $\tau_{\text{RMS}} = 4 \mu s$
MMSE Decision Feedback Equalizer for FBMC Systems

Per-subchannel DFE and OQAM de-staggering O_k^\prime, k even:

![Diagram](image.png)
MMSE Decision Feedback Equalizer for FBMC Systems

Optimization problem:

\[
\begin{align*}
(w_{k,\text{MMSE}}, f_{k,\text{MMSE}}) &= \arg \min_{(w_k, f_k)} \mathbb{E} \left[|\hat{a}_k[m] - a_k[m - \nu]|^2 \right], \\
\text{where} \\
\hat{a}_k[m] &= \text{Re} \left[w_k^H y_k[n] \right], \quad n = 2m, \quad m \in \mathbb{Z}, \\
\nu \text{ is the equalization delay and} \\
y_k[n] &= [y_k[n], y_k[n - 1], \ldots, y_k[n - N + 1]]^T \in \mathbb{C}^N.
\end{align*}
\]
MMSE Decision Feedback Equalizer for FBMC Systems

DFE solution for i.i.d. input symbols $d_k[m]$ with variance σ_d^2:

$$
\begin{bmatrix}
 w'_{k,\text{MMSE}} \\
 f_{k,\text{MMSE}}(R)
\end{bmatrix} =
\begin{bmatrix}
 H_k H_k^T + F_k F_k^T + R_{\eta,k} - \frac{\sigma_d}{\sqrt{2}} H_k J_\nu \\
 - \frac{\sigma_d}{\sqrt{2}} J_\nu^T H_k^T \\
 - \frac{\sigma_d^2}{2} I_{B+1}
\end{bmatrix}^{-1}
\begin{bmatrix}
 \frac{\sigma_d}{\sqrt{2}} H_k e_\nu \\
 0_{B+1}
\end{bmatrix},
$$

where

$$
J_\nu = \begin{cases}
 \begin{bmatrix} 0_{(\nu+1)\times(B+1)} & I_{B+1} & 0_{(L-B-\nu-1)\times(B+1)} \end{bmatrix}^T, & L - \nu > B + 1, \\
 \begin{bmatrix} 0_{(\nu+1)\times(B+1)} & I_{B+1} \end{bmatrix}^T, & L - \nu < B + 1, \\
 \begin{bmatrix} 0_{(\nu+1)\times(B+1)} & I_{B+1} \end{bmatrix}^T, & L - \nu = B + 1.
\end{cases}
$$

B: length of the feedback filter

$L = N + Q - 2$

Baltar, L.G.; Waldhauser, D.S.; Nossek, J.A.; MMSE subchannel decision feedback equalization for filter bank based multicarrier systems; ISCAS 2009.
BER Comparison between FBMC and CP-OFDM

MMSE DFE in WiMAX scenario:

Parameters:

16-QAM
\(M = 1024(256) \)
\(M_{\text{data}} = 840(210) \)
\(\Delta f = 10.9(43.7) \text{ kHz} \)
\(BW = 10 \text{ MHz} \)
\(T_s = 89.28 \text{ ns} \)
\(T_{cp} = 91.42 \mu s(1/4) \)
Extended TU 3GPP
Static
\(\tau_{\text{RMS}} = 0.99 \mu s \)
Adaptive MMSE DF Equalizer for FBMC Systems

Per-subchannel decision directed OQAM adaptive DFE:

\[
y_k[n] \xrightarrow{w_k[n]} \Delta w_k[n], \Delta f_k[n] \xrightarrow{LMS} \hat{w}_k[n] \xrightarrow{f_k[n]} \hat{x}_k[n] \xrightarrow{O_k} \epsilon_k[n] \xrightarrow{O_k} \epsilon_k[n] \xrightarrow{\hat{d}_k[m]} \tilde{d}_k[m]
\]

Waldhauser, D.S.; Baltar, L.G.; Nossek, J.A.; *Adaptive decision feedback equalization for filter bank based multicarrier systems*; ISCAS 2009.
Adaptive DF Equalizer for FBMC Systems

Adaptive O-QAM DFE LMS in a static WiMAX scenario:

Parameters:

16-QAM

- \(M = 1024(256) \)
- \(M_{\text{used}} = 840(210) \)
- \(\Delta f = 10.9(43.7) \text{ kHz} \)
- \(B = 10 \text{ MHz} \)
- \(T_s = 89.28 \text{ ns} \)
- \(T_{cp} = 91.42 \mu s(1/4) \)
- ITU Veh. A Static
- \(\tau_{\text{RMS}} = 0.37 \mu s \)
Conclusions

- The effect of noise correlations in a coded FBMC system is negligible for a WiMAX scenario.
- DFE should be employed only when the frequency selectivity inside one subcarrier is very high.
- The equalizer analytical solutions are based on perfect channel knowledge.